Shortest Path & Application

Group 4 Ben Osinski Josh Kimber Joe O'Rourke Liana Nabieva

Overview

- Shortest Path Defined
- Word Problem
- Visual Model
- Equations
- Solution + Analysis

Definition of Shortest Path

- The <u>shortest-path</u> is finding the shortest path in a network from one node (or set of nodes) to another node (or set of nodes).
- Can minimize: distance,cost, and/or time.

Shortest Path Example

Objective Function:

Min 3x12+ 2x13+ 4x24+ 5x25+ 3x34+ 7x35+ 6x46+ 2x56

Shortest Path Example

Balance Equations for Nodes: Origin: x12 + x13 = 1x23 + x25 - x16 = 0x34 + x35 - x13 = 0x34 + x35 - x24 - x34 = 0x56 - x25 - x35 = 0**Destination**: x46 + x56 = 1

LINGO Format

Model: !Shortest Path Problem; !Objective Function; Min = $3^{*}x12+ 2^{*}x13+ 4^{*}x24+ 5^{*}x25+ 3^{*}x34+ 7^{*}x35+ 6^{*}x46+ 2^{*}x56;$!Subject to; x12+ x13= 1; x24+ x25 - x12= 0; x34+ x35 - x13= 0; x34+ x35 - x24 - x34= 0; x56- x25- x35= 0; x46+ x56= 1;End

LINGO Results

Global optimal solution found.			
Objective value:		10.00000	
Infeasibilities:		0.000000	
Total solver iterations:		1	
Model Class:		LP	
Total variables:	8		
Nonlinear variables:	0		
Integer variables:	0		
Total constraints:	7		
Nonlinear constraints:	0		
Total nonzeros:	23		
Nonlinear nonzeros:	0		

Variable	Value	Reduced Cost
X12	1.000000	0.000000
X13	0.000000	0.000000
X24	0.000000	0.000000
X25	1.000000	0.00000
X34	0.000000	0.000000
X35	0.000000	3.000000
X46	0.000000	1.000000
X56	1.000000	0.000000
Row	Slack or Surplus	Dual Price
Row 1	Slack or Surplus 10.00000	Dual Price -1.000000
Row 1 2	Slack or Surplus 10.00000 0.000000	Dual Price -1.000000 -5.000000
Row 1 2 3	Slack or Surplus 10.00000 0.000000 0.000000	Dual Price -1.000000 -5.000000 -2.000000
Row 1 2 3 4	Slack or Surplus 10.00000 0.000000 0.000000 0.000000	Dual Price -1.000000 -5.000000 -2.000000 -3.000000
Row 1 2 3 4 5	Slack or Surplus 10.00000 0.000000 0.000000 0.000000 0.000000	Dual Price -1.000000 -5.000000 -2.000000 -3.000000 2.000000
Row 1 2 4 5 6	Slack or Surplus 10.00000 0.000000 0.000000 0.000000 0.000000	Dual Price -1.000000 -2.000000 -3.000000 2.000000 3.000000
Row 1 2 3 4 5 6 7	Slack or Surplus 10.00000 0.000000 0.000000 0.000000 0.000000	Dual Price -1.000000 -2.000000 -3.000000 2.000000 3.000000 -5.000000

What if we change something?

Now let's re-run the problem...

LINGO Format

```
Model:

!Shortest Path Problem;

!Objective Function;

Min = 3^{x}12+ 2^{x}13+ 4^{x}24+ 5^{x}25+ 1^{x}34+ 7^{x}35+ 6^{x}46+ 2^{x}56;

!Subject to;

x12+ x13= 1;

x24+ x25 - x12= 0;

x34+ x35 - x13= 0;

x34+ x35 - x24 - x34= 0;

x56- x25- x35= 0;

x46+ x56= 1;

End
```

LINGO Results

Global optimal solution found.		
Objective value:		9.000000
Infeasibilities:		0.000000
Total solver iterations:		1
Model Class:		LP
Total variables:	8	
Nonlinear variables:	0	
Integer variables:	0	
Total constraints:	7	
Nonlinear constraints:	0	
Total nonzeros:	23	
Nonlinear nonzeros:	0	

Variable	Value	Reduced Cost
X12	0.00000	0.000000
X13	1.000000	0.00000
X24	0.00000	0.00000
X25	0.00000	1.000000
X34	1.000000	0.00000
X35	0.00000	6.000000
X46	1.000000	0.00000
X56	0.00000	0.00000
Row	Slack or Surplus	Dual Price
1	9.000000	-1.000000
2	0.00000	-3.000000
3	0.000000	0.00000
4	0.00000	-1.000000
5	0.00000	4.000000
6	0.000000	4.000000
7	0.000000	-6.000000

The Shortest Path

THE END